Source code for pymepix.util.timewalk

# This file is part of Pymepix
#
# In all scientific work using Pymepix, please reference it as
#
# A. F. Al-Refaie, M. Johny, J. Correa, D. Pennicard, P. Svihra, A. Nomerotski, S. Trippel, and J. Küpper:
# "PymePix: a python library for SPIDR readout of Timepix3", J. Inst. 14, P10003 (2019)
# https://doi.org/10.1088/1748-0221/14/10/P10003
# https://arxiv.org/abs/1905.07999
#
# Pymepix is free software: you can redistribute it and/or modify it under the terms of the GNU
# General Public License as published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
# even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with this program. If not,
# see <https://www.gnu.org/licenses/>.

import numpy as np


[docs] def compute_timewalk(tof, tot, region): from scipy.optimize import curve_fit # Filter for the calibration region we are looking at region_filter = (tof >= region[0]) & (tof <= region[1]) tof_region = tof[region_filter] * 1e9 tot_region = tot[region_filter] # Find maximum tot percent_vals = len(tof_region) // 100 # Find maximum tot # max_tot_index = np.argmax(tot_region) center_tof = np.mean(tof_region[np.argsort(-tot_region)[0:percent_vals]]) print(center_tof) # This is our 'correct' TOF # center_tof = tof_region[max_tot_index] # Compute the time difference time_diff = tof_region - center_tof time_walk_bin = int((np.max(tof_region) - np.min(tof_region)) / 1.562) tot_bins = int(np.max(tot_region) - np.min(tot_region)) / 25 print(time_walk_bin, tot_bins) # Sample on a 2d histogram time_hist, tot_bins, time_bins = np.histogram2d(tot_region, time_diff, bins=[tot_bins, time_walk_bin]) bin_edges = time_bins bin_centres = (bin_edges[:-1] + bin_edges[1:]) / 2 tot_points = [] time_walk_points = [] total_bins = time_hist.shape[0] print(total_bins) # print(bin_centres) # For each bin for b in range(0, total_bins): # print(b) current_tot = time_hist[b] # plt.plot(bin_centres,current_tot) # plt.show() # center_guess = np.sum(current_tot*bin_centres)/np.sum(current_tot) # sigma_guess = np.sqrt(np.sum(current_tot*np.square(bin_centres - center_guess))/(np.sum(current_tot)-1)) # print(center_guess,sigma_guess) # if b==4: # return # continue # # Define model function to be used to fit to the data above: def gauss(x, *p): A, mu, sigma = p return A * np.exp(-((x - mu) ** 2) / (2.0 * sigma**2)) # Fit sampled tot region with gaussian center_guess = np.sum(current_tot * bin_centres) / np.sum(current_tot) sigma_guess = np.sqrt(np.sum(current_tot * np.square(bin_centres - center_guess)) / (np.sum(current_tot) - 1)) # print('CENTER ',center_guess) # print('SIGMA ',sigma_guess) # # p0 is the initial guess for the fitting coefficients (A, mu and sigma above) p0 = [np.max(current_tot), center_guess, sigma_guess] # print(p0) try: coeff, var_matrix = curve_fit(gauss, bin_centres, current_tot, p0=p0) except Exception: print(f"Counldn't do it {Exception}") continue print(tot_bins[b], coeff[1]) if np.isnan(coeff[2]): continue if coeff[1] < 1.525: break # print(coeff[1],coeff[2]) # if(coeff[1]>last_mean): # continue # last_mean = coeff[1] # # Get the fitted curve # hist_fit = gauss(bin_centres, *coeff) # test = np.sum(current_tot) # if(test <=0): # continue # mean = np.sum(current_tot*bin_centres)/np.sum(current_tot) # if(mean < 0): # break # #Mean (coeff[1]) is the timewalk # time_walk_points.append(mean) time_walk_points.append(coeff[1]) tot_points.append(tot_bins[b]) # print(tot_points) # no point correcting further than this since its below 1.5625 ns return np.array(tot_points), np.array(time_walk_points)
[docs] def compute_timewalk_lookup(tof, tot, region): from scipy import interpolate tot_points, time_walk_points = compute_timewalk(tof, tot, region) tot_lookup_table = np.zeros(0x3FF, dtype=np.float32) tot_lookup_table[tot_points.astype(int) // 25] = time_walk_points[...] f = interpolate.interp1d(np.array(tot_points), np.array(time_walk_points)) for x in range(0x3FF): try: val = f((x + 1) * 25) tot_lookup_table[x] = val except Exception: pass return tot_lookup_table * 1e-9